

Biological and integrated control of plant pathogens

From single microbes to microbiomes targeting
One Health

June 11-14, 2025 Università degli Studi di Torino (Italy)

Characterization of *Stemphylium vesicarium* isolates from pear orchards in Emilia Romagna (Italy) and assessment of potential microbial biocontrol agents

Alessandro Montorsi¹, Marina Cortiello¹, Fares Bellameche¹, Massimiliano Menghini², Chiara Nasuti¹, Francesco Modica³, Riccardo Baroncelli², Marina Collina², Lisa Solieri¹, Emilio Stefani¹, Davide Giovanardi¹

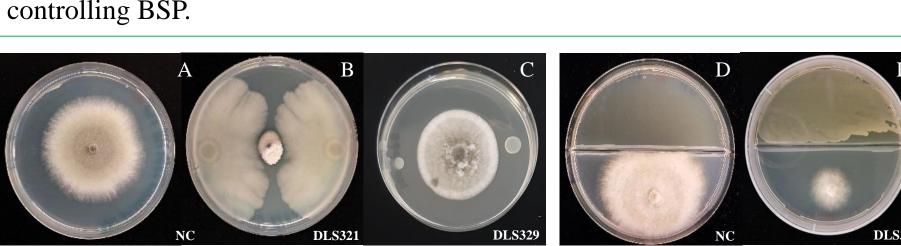
¹Department of Life Science, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; ²Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy; ³Department of Agriculture, Food and Environment (Di3A), University of Catania 95123, Catania, Italy. E-mail: davide.giovanardi@unimore.it

INTRODUCTION

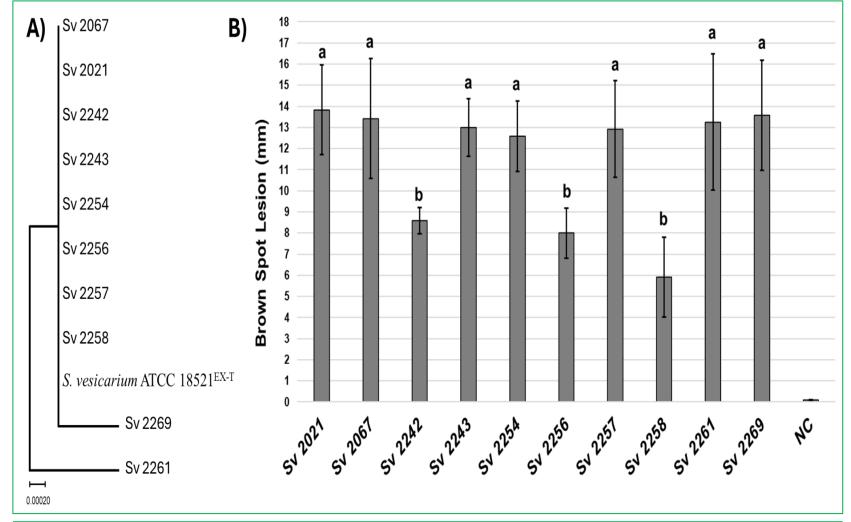
Stemphylium vesicarium (Sv), the causal agent of brown spot of pear (BSP), is responsible for important economic losses in the main producing areas of Italy, such as in the Emilia Romagna region, on the highly susceptible pear cultivar Abbé Fétel.

Currently, the disease pressure and the development of Sv resistance traits to chemical fungicides, call attention to the need for sustainable management strategies. Our study aimed to characterize Sv isolates from Emilia Romagna orchards, at a molecular and pathogenic level, and to search for carposphere epiphytes as possible microbial biocontrol agents (mBCAs).

MATERIALS AND METHODS


In summer 2023 and 2024, fungal isolation were carried out on diseased pear fruits, cv. Abbé Fétel, in four Emilia Romagna orchards. The isolates were morphologically characterized and molecularly

identified by means of the partial sequencing of ITS, GAPDH and EF regions and phylogenetic analyses. The BSP severity was assessed for each Sv isolate on detached fruits. The antimicrobial activity of four bacterial isolates from the pear carposphere was tested by: (i) in vitro assays against Sv, both in dual culture and double plate assays and (ii) bioassay on detached fruits.


RESULTS AND DISCUSSION

From symptomatic pear fruits, a set of 10 Sv isolates

were collected and molecularly identified: BLAST analysis displayed 99–100% identity with the ex-type strain Sv ATCC 18521^{EX-T}. Among them, nine strains clustered together with the Sv ATCC 18521^{EX-T}. Besides, only Sv 2261 clustered separately in a second clade, despite a very low genetic distance (Fig. 1A). Bioassay on detached fruits showed the presence of two Sv groups with "high" (7 strains) and "low" (3 strains) virulence (Fig. 1B). Bacterial isolates from pear carposphere were identified as members of the genera Bacillus (DLS188, DLS321 and DLS323) and Pseudomonas (DLS329). Bacillus sp. DLS321 was the most effective in reducing Sv growth in dual culture assay (Fig. 2 A-C). Meanwhile, *Pseudomonas* sp. DLS329 was the most performing in both double plate assay and bioassay on detached fruits, with a reduction rate up to 29.89% (Fig. 2 D-E), and 80.37%, respectively (Fig. 3; Table 1). Further studies are needed to investigate the mechanisms by which these promising mBCAs might exert their adverse effects against Sv. Future experiments will focus on in planta validation to confirm their effectiveness in controlling BSP.

Figure 2. *In vitro* dual culture (A-B-C) and double plate assays (D-E) of representative bacterial isolates against *Sv*.

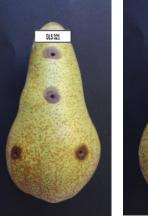


Figure 1. A) Phylogenetic tree based on combined ITS, GAPDH and EF sequences of the 10 *Sv* strains. B) Evaluation of BSP disease severity on detached pear fruits infected with *Sv*.



Figure 3. Evaluation of BSP disease control on detached pear fruits.

Table 1. Identity and effect of 4 bacterial isolates on Sv 2021 mycelial growth inhibition (MGI) in vitro (dual and double plate assays) and BSP disease severity reduction on detached pear fruits.

Strain	Identity (BLASTn 16S rRNA)	Dual plate MGI (%)	Double plate MGI (%)	BSP severity reduction on detached fruits (%)
DLS188	Bacillus sp.	72.41 ^a	16.67°	26.30°
DLS321	Bacillus sp.	74.29 ^a	24.46 ^b	11.48 ^c
DLS329	Pseudomonas sp.	21.00 ^b	29.89a	80.37a
DLS323	Bacillus sp.	70.11 ^a	22.96b	33.33 ^b

Acknowledgements: This study was funded by the Emilia Romagna region within Reg. Law 17 del 27/10/2022. Type of operation "Urgent interventions to support the agricultural, agri-food, fishing and reclamation sectors" Art. 1 "Interventions for innovation in the agricultural and agri-food sector" — Project "A.MA.PERO - Approaci innovativi indirizzati a contrastare la Maculatura bruna del Pero". Research was conducted in collaboration with the framework of the EU-COST action CA22158 (MiCropBiomes: Exploiting Plant-Microbiomes Networks and Synthetic Communities to improve Crops Fitness).